122 research outputs found

    Interpreting Deep Visual Representations via Network Dissection

    Full text link
    The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.Comment: *B. Zhou and D. Bau contributed equally to this work. 15 pages, 27 figure

    Street-View Image Generation from a Bird's-Eye View Layout

    Full text link
    Bird's-Eye View (BEV) Perception has received increasing attention in recent years as it provides a concise and unified spatial representation across views and benefits a diverse set of downstream driving applications. While the focus has been placed on discriminative tasks such as BEV segmentation, the dual generative task of creating street-view images from a BEV layout has rarely been explored. The ability to generate realistic street-view images that align with a given HD map and traffic layout is critical for visualizing complex traffic scenarios and developing robust perception models for autonomous driving. In this paper, we propose BEVGen, a conditional generative model that synthesizes a set of realistic and spatially consistent surrounding images that match the BEV layout of a traffic scenario. BEVGen incorporates a novel cross-view transformation and spatial attention design which learn the relationship between cameras and map views to ensure their consistency. Our model can accurately render road and lane lines, as well as generate traffic scenes under different weather conditions and times of day. The code will be made publicly available
    • …
    corecore